

Asphalt Manager Intelligent Compaction

WHAT IS INTELLIGENCE

1)Collect Information

2)Use the Collected Information to Make a Decision

3) Execute the Decision

Surface Covering Compaction Measurement

- 1983 Terrameter BTM 01 (OMEGA)
- 1993 Guidelines for Surface Covering Measurements National Research Association
- 1994 ZTVE / TP BF-StB 94, proof methods FDVK/ SCCC
- 1996 Compaction Management System BCM 03
- 1998 VARIOCONTROL
- 2001 Measuring device for evaluation of stiffness (Evib)
- 2004 Modular Measuring System with GPS support

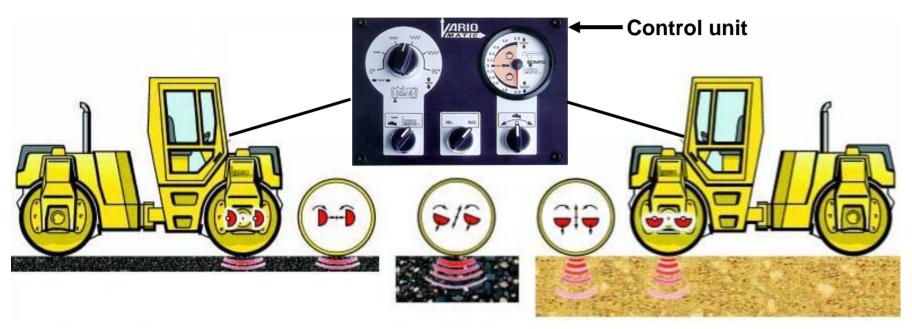
History

BOMAG Compaction Technology

1996 Variomatic for asphalt rollers

1998 Variocontrol for soil rollers

2000 Evib (MN/m²)


2001 Asphalt Manager

2004 Research project of German DOT

(BAST), Oct / Nov. 2004;

VARIOMATIC roller with directed vibration

low dynamic energy

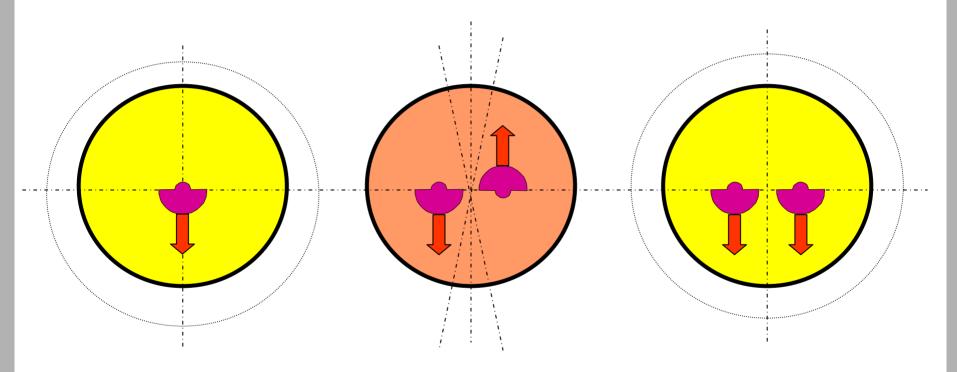
Compaction principle

static pressure and dynamic energy which is automatically adjusted to type of material, compactibility, layer thickness and base layer conditions. high dynamic energy

Applications: asphalt layers, granular bases and subbases.

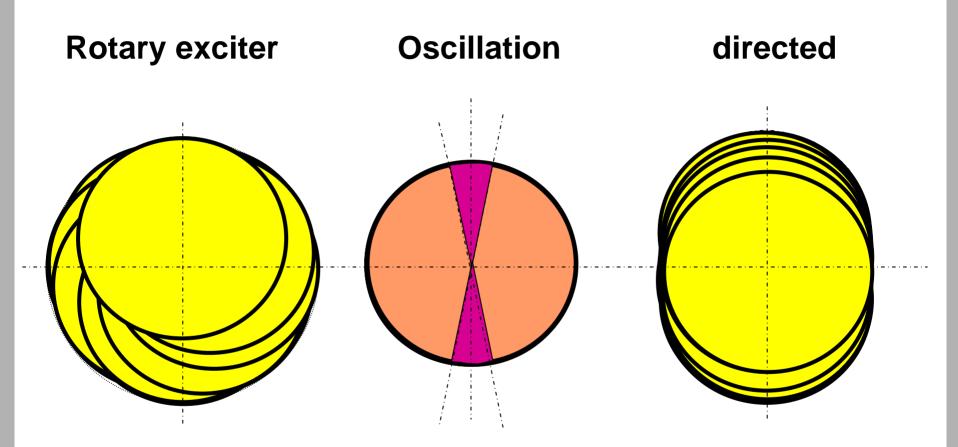
Worldwide proven design:

Several hundreds Tandem rollers

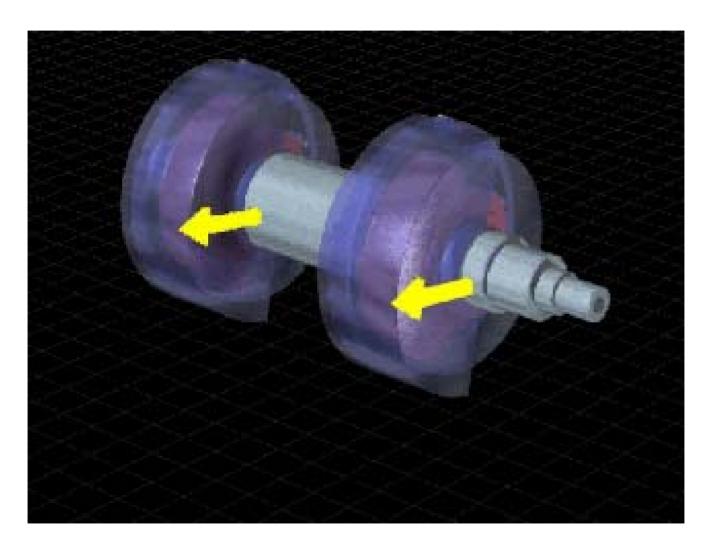


Vibration Systems

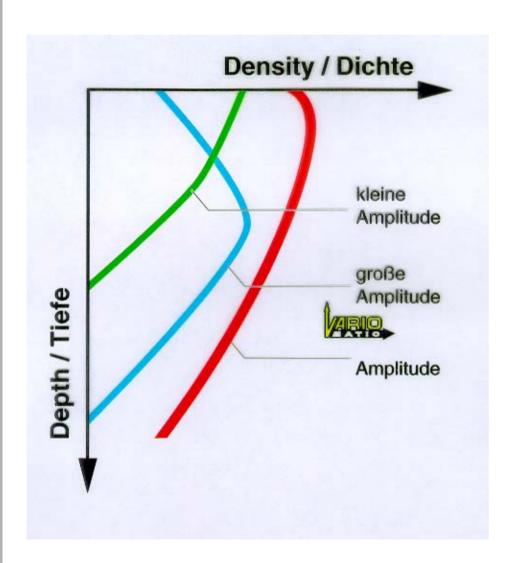
Rotary exciter


Oscillation

directed



Vibration Systems


Non Directed Forces:

Vibration systems / Overview

	Vibration	Oscillation	Variomatic	
Principle	Rotary exciter with	2 rotary exciters with 2	2 rotary exciters with 2	
	unbalanced weight	unbalanced weight	unbalanced weight	
			counter rotating	
Oscillation	non directed	directed	directed	
	-	horizontally	horizontally to vertically	
Amplitudes	up to 8	2 fixed amplitudes	automatic variation	
	up to 1,3 mm	ca. 1,3 mm	0 - 0,9 mm	
			horizontal/vertical	
Frequencies	35 -70 Hz	33 - 42 Hz	35 - 50 Hz	
Control system	manual	manual	automatic variation	

Comparison:

Rotary exciter (no infinite variation)

Variomatic (automatic compaction)

Advantages vs. Rotary exciter:

- Better depth effect
- Excellent Asphalt surfaces
 - Eveness
 - Grip / roughness

Asphalt Manager

Benefits for contractors:

- Universal use on
 - Road base
 - Wearing course layers
 - Thin layers
- Higher compaction performance
- Uniform compaction, even on sub-bases with inhomogeneous stiffness
- Better eveness and more uniform surface structure
- Low tendency to scuffing

Compaction of 6 cm asphalt binder course 0/10, RN13 France Operating weight and compaction technique affect smoothness and eveness

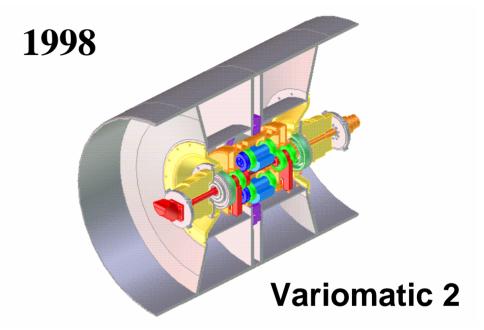
15 t tandem vibratory roller 8 passes

8 t BOMAG VARIOMATIC BW 151 AD 8 passes

Density and roughness measurement on asphalt binder layer

Punctual compaction measurement with portable isotope probe


Continuous compaction measurement with mobile isotope probe [1 measurement / 10 m]]



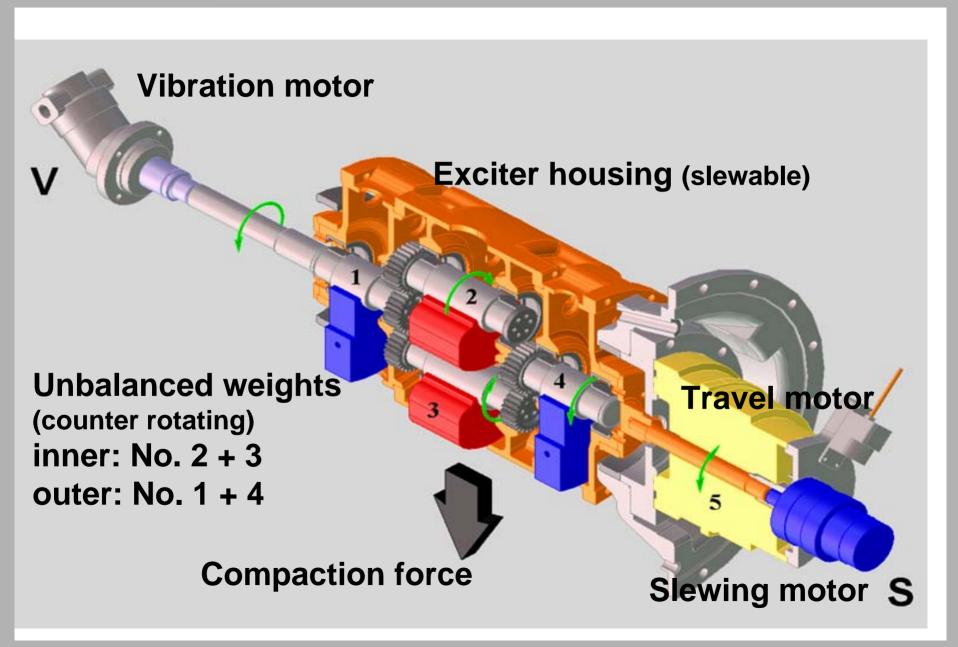
Comparison between conventional compaction concept and VARIOMATIC

	Compaction					Roughness			
	Portable isotope probe		Mobile isotope probe [1 measurem./10 m]		Sand spot method				
	n	X1	σ	n	X1	σ	n	X2	σ
4 passes with 25 t rubber tire roller and 4 passes with 15 t tandem vibratory roller	14	92,5 %	1,22	59	94,6 %	1,29	12	0,46 mm	0,07
8 passes with BW 151 AD-2 VARIOMATIC	14	92,5 %	0,54	59	93,8	1,06	12	0,60 mm	0,05

n = number of measurements, X1 = mean value of achieved Gyrator test compaction value (93% Gyrator value ~ 98% Marshall value), X2 = mean value of characteristic roughness value

advanced, more powerful also for split drums!

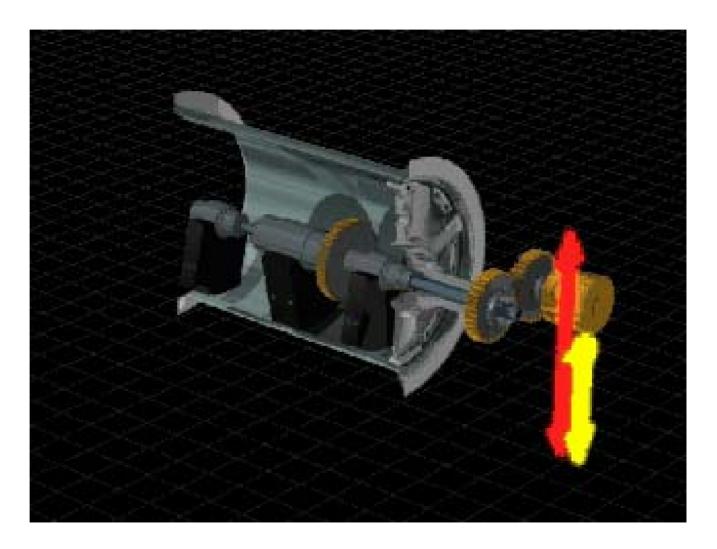
Latest developments of compaction technology

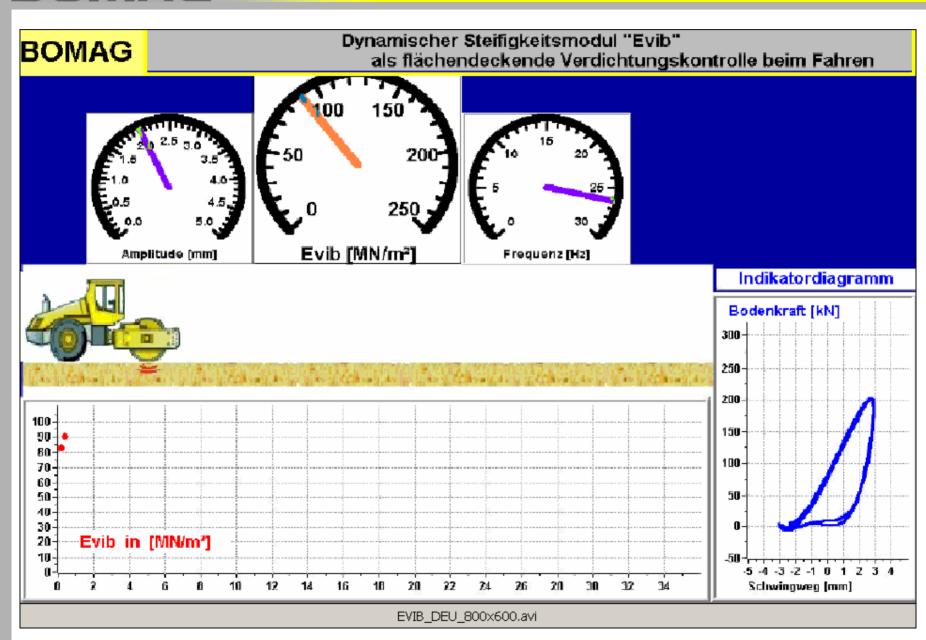

1996 Variomatic for asphalt rollers

1998 Variocontrol for soil rollers

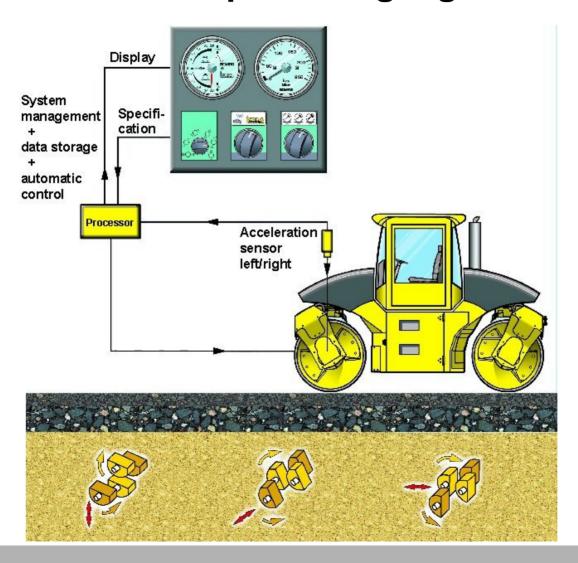
2000 Evib (MN/m²)

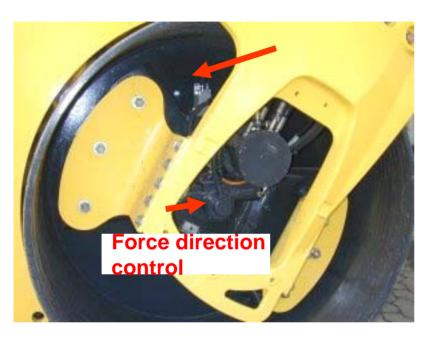
2001 Asphalt Manager


Directed Exciter System



BOMAG VARIOCONTROL


Force Direction
Control:
Infinite adjustment
of exciter housing
from
horizontal to
vertical.



Asphalt Manager with new measuring value E_{VIB} [MN/m²] and temperature gauge

Acceleration meters

Benefits for Operators:

No critical decisions required

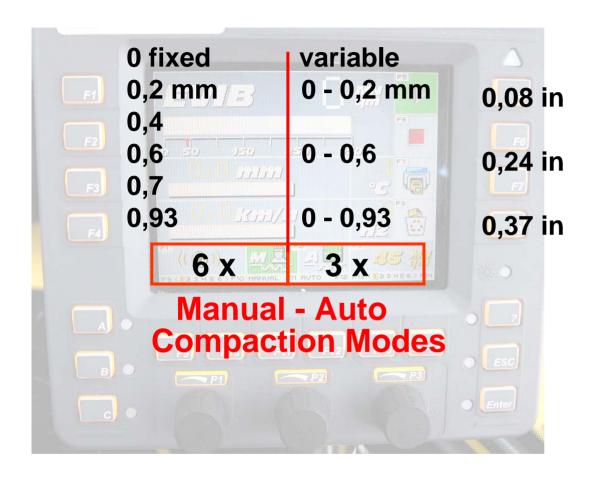
All operators achieve better results:

- good and uniform compaction

Continuous information on

- asphalt temperature
- compaction increase

Asphalt Manager: Easy to understand



Technical Data

PARAMETERS		BW 141 / 151 AD AM		BW 190 / 203 AD AM				
Front: AM Rear: Std. Exciter								
Oper.weight	kg	8.000	8.400	12.000	13.100			
Drum width	in	59	66	79	84			
Amplitudes								
front	mm	0,96	0,95	0,93	0,73			
rear	mm	0,64 / 0,27	0,6 / 0,25	0,86 + 0,37	0,7 / 0, 3			
Frequencies								
front / rear	Hz	45	45	40 + 50 / 46+57	40+50 / 40+50			
Centr. force								
front	kN	<u>160</u>	<u>168</u>	247 / <u>158</u>	247 /158			
rear	kN	80 / 34	80 / 34	167 / 109	<u>126 / 84</u>			

Bomag Operational Panel

Bomag Operational Panel

- Start

- Stop

- Print out

- Delete

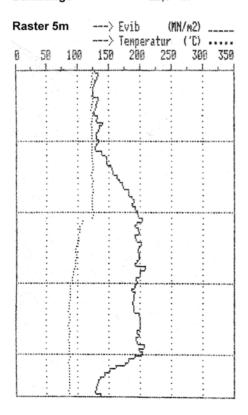
Test procedere:

- Mark the track to be compacted
- "Manual operation mode" with
- Fixed amplitude
- Fixed working speed

Bomag Operational Panel

SETTINGS

- Escape
- Enter



BOMAG ASPHALTMANAGER

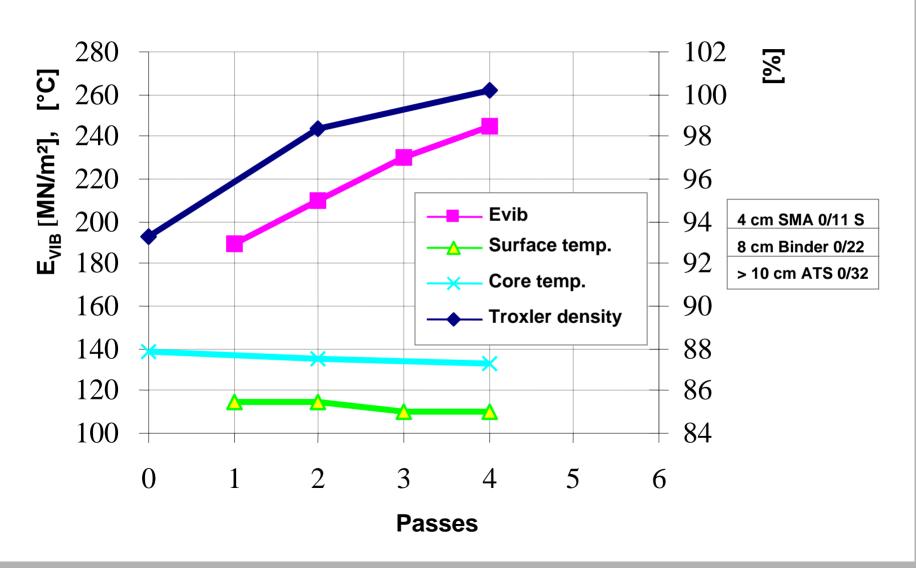
UEBERGANG 1 VOR. BOMAG AM REV 6 DEU BW 174 AM

Einstellung: Hand / 0,40 mm

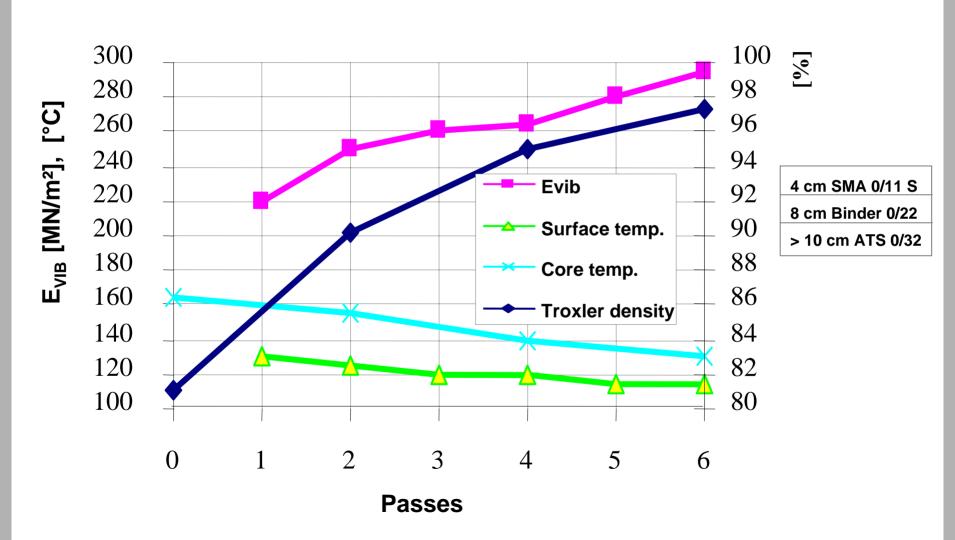
Evib Max. = 206 MN/m2 Evib Min. = 124 MN/m2 Evib Mittelwert = 168 MN/m2 Frequenz = 44,3 Hz Mittlere Fahrgeschw. = 3,3 km/h Bahnlänge = 22,9 m

 E_{VIB} Max. / E_{VIB} Min.

E_{VIB} Average


Frequency

Average Speed


Track length

Temperature

E_{VIB} and Density as function of passes; BW 174 AD Asphalt Manager, Automatic mode; Asphalt Base 0/32 CS B65, Nürnberg A3

E_{VIB} and Density as function of passes; BW 174 AD Asphalt Manager, Manual mode 4; Wearing course SMA 0/11S PmB45, Nürnberg A3

Asphalt Manager

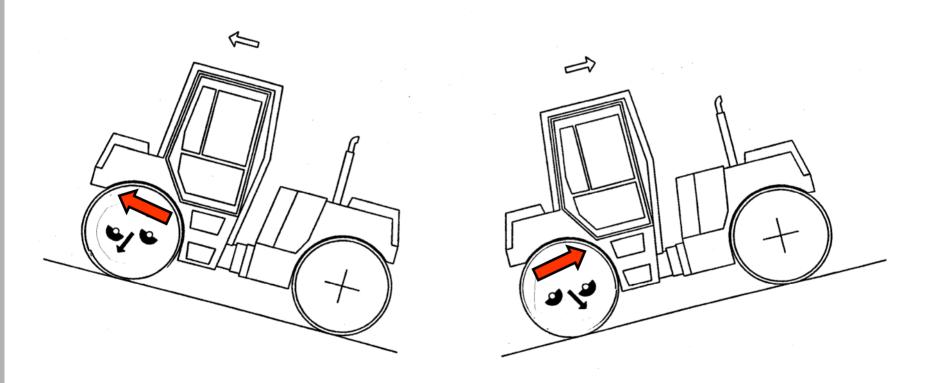
Advantages:

- Immediate determination of dynamic stiffness in MN/m² (E_{VIB})
- E_{VIB} can be correlated with the increase of compaction
- E_{VIB} is widely independent from roller parameters
- E_{VIB} printouts for area covering compaction control

In Development:

- Target E_{VIB} values to be pre-selectable
- "Ready" indication if target value is achieved (red light)
- "Ready" indication if no further compaction is possible (red light)

Number of passes with vibratory rollers


Recommended figures:

Layer thickness d [cm]		No. of passes with vibration of different tandem rollers					
		3 t	6 t	9 t			
2		2 - 4	1 - 2 (L)	1 - 2 (L)			
4		4 - 6	2 - 4 (L)	2 - 4 (L)			
6		4 - 8	4 - 6 (L)	2 - 4 (L)			
10		6 - 8	4 - 8 (L, H)	4 - 6 (L, H)			
14			6 - 8 (H)	4 - 6 (H)			
18			6 - 8 (H)	4 - 8 (H)			
SMA	d = 2		1 - 2 (L) + stat. passes	1 - 2 (L) + stat. passes			
(Stone mastix)	d = 4		4 - 6 (L) + stat. passes	4 - 6 (L) + stat. passes			
Porous asphalt	d = 4		1 - 2 (L) + stat. passes	1 - 2 (L) + stat. passes			

L = low amplitude, H = high amplitude 3 t = Machine with only the amplitude **Assumption: Compaction temperature > 100°C**

Further advantages: better gradability- less shoving effect

Automatic force adaption with travel direction

Evib (MN/m²) Vibration modulus

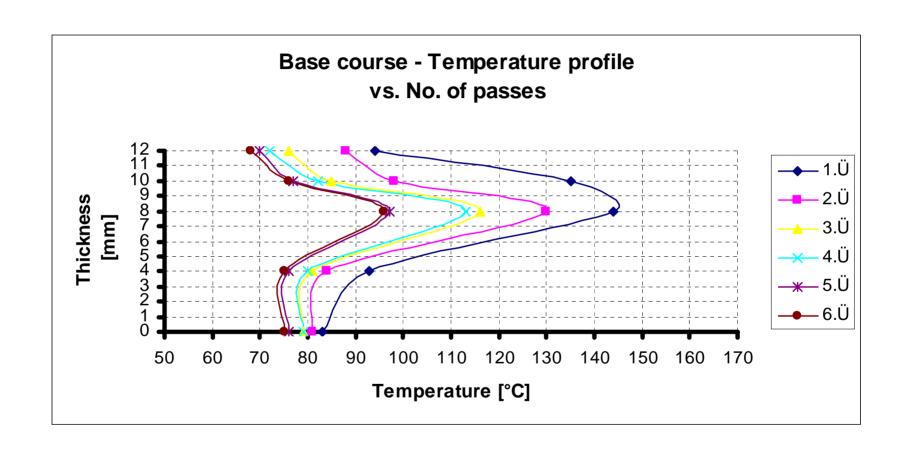
Equivalent for dynamic Stiffness;

Directly picked up by the roller;

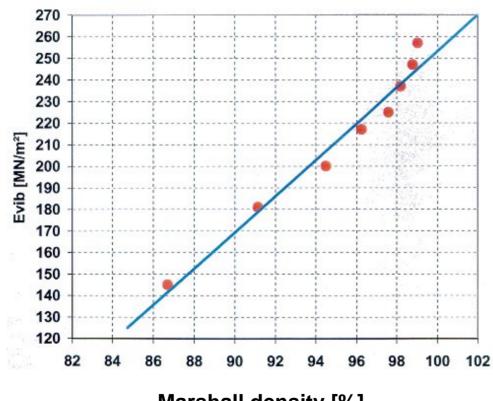
Physical value for compaction increase on asphalt.

Benefits for Contractors: Investment for Profit

Compaction


- Uniform and predictable results whilst rolling
- Avoids under / overcompaction
- Better eveness and roughness
- Eliminates drum bouncing

Economical and quality aspects

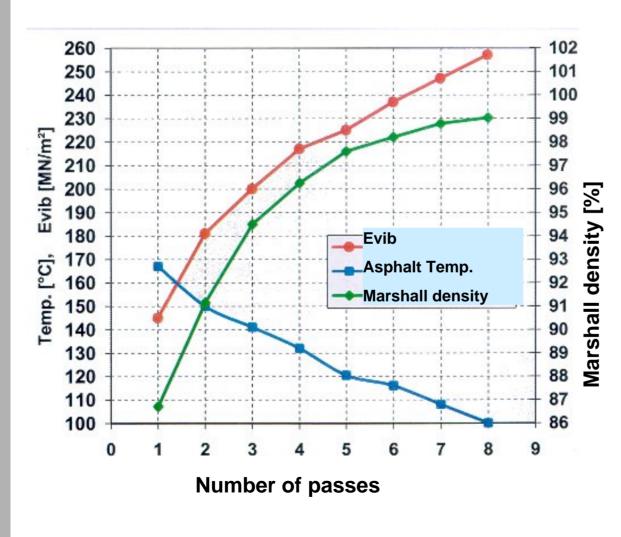

- More efficient roller utilization with fewer passes
- Reduced shock loads in sensitive environment e.g. buildings, bridges
- Area coverage method

Temperature development

Compaction test on asphalt wearing course (stone mastix asphalt)

Marshall density [%]

Perfect correlation:


Evib + Marshall density

Adequate conditions:

- Temperature between (170-120 °C)
- Asphalt layer on solid ground

Compaction test on asphalt wearing course (stone mastix asphalt)

Increase of Evib = Increase of compaction

Comfort + Quality:

Compaction of joints hot against cold

- avoids shock loads
- no bouncing
- better eveness

Leipzig:

"Augustusplatz"

Compaction on a parking roof top;

Alternatives:

15 t static roller With BVM

- 15 cm layers

- 40 cm layers

Application

Avoids shock loads on bridges and near buildings

Depth control via force adjustment

- 3 automatic control ranges
- 6 manual force directions (fixed)

FEATURES

BENEFITS

Modular Design Principle:

Less Expenses for Warehousing, Training, and Logistics;

- Operator Platform
- Central Electric System
- Travel- / Vibration Pumps and Motors
- Support Legs

Surface Quality

Perfect Results:

- Roughness
- Eveness

CONCISE OPERATING INSTRUCTIONS ASPHALT MANAGER

Application soil compaction

Support for compaction works and measuring paths on sub-grade, frost blanket layers and non-bonded bearing layers: the E_{VIB} value increases with increasing compaction. Weak spots are localized.

Application asphalt compaction

Support for compaction works on asphalt layers. If compaction is performed within a narrow temperature range (e.g. 120° – 150°C) and the sub base is of sufficient stability, E_{VIB} will show the increase in compaction. A direct statement on the density is only possible after performing comparison measurements with an isotope probe (Troxler). Compaction force and depth effect can be adapted to the layer to be compacted and to the substrate

(see matrix of recommended applications).

Condition of the substrate Setting		Asphalt bearing course	Asphalt binder Easy to compact Difficult to compact		Asphalt pavement Asphalt concrete Stone mastic	
	Automatic: Force level	3	2-3	3	2	3
evenly firm (stable)	alternative: Manual*: Position	6-3	4-3	5-3	4-2	4-2
	Compaction temperature	> 80°C	> 80°C	> 100°C	> 100°C	> 120°C
yielding (soft)	Automatic: Force level	2	1-2	2	1	2
	alternative: Manual*: Position	4-2	3-2	3-2	2-1	2-1
	Compaction temperature	> 80°C	> 80°C	> 100°C	> 100°C	> 120°C
Layers on bridges	Automatic: Force level	1-2	1-2	1-2	1	1-2
	alternative: Manual*: Position	3-2	2-1	2-1	2-1	2-1
	Compaction temperature	> 80°C	> 80°C	> 100°C	> 100°C	> 120°C

Temperature specifications related to the asphalt surface, * in manual mode start with higher level first, and reduce after

CONCISE OPERATING INSTRUCTIONS ASPHALT MANAGER

Manual mode

6 selectable amplitudes each with constant direction of vibration

Automatic mode

3 selectable force ranges with amplitude control, limited to compaction force and depth effect

Display, direction of vibrations

E_{VIB} display

Temperature gauge

Emergency switch

① Display of vibration direction and amplitude

shows the direction of drum vibration and the size of the vertical amplitude

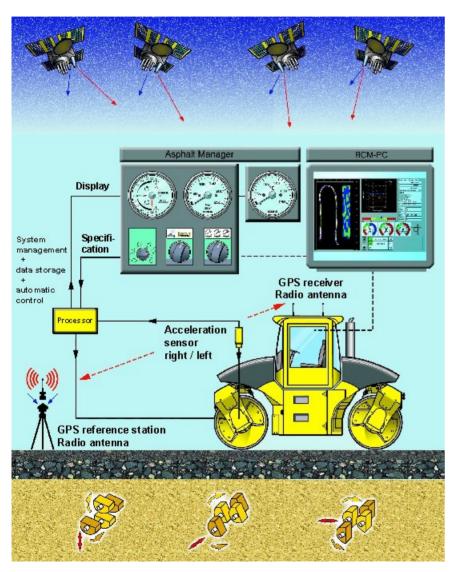
② E_{VIB} display

 E_{VIB} shows the dynamic stiffness of the material to be compacted in in MN/m^2

- E_{VIB} responds to changes in density. With increasing density the asphalt becomes firmer (stiffer). The E_{VIB} value increases.
- E_{VIB} responds to temperature changes. With dropping temperature the asphalt becomes firmer (stiffer), even if the end of compaction is not yet reached . E_{VIB} increases with decreasing temperature.
- E_{VIB} responds to deviations in the stiffness of the substrate (base layer). On a soft substrate and with a pre-selected high force level the E_{VIB} may remain low.

3 Temperature gauge

The temperature is permanently detected as asphalt surface temperature. Depending on layer thickness, ambient temperature and wind force the mix temperature inside the core of the layer may be up to 40°C higher. At a surface temperature of 80°C compaction should be completed.

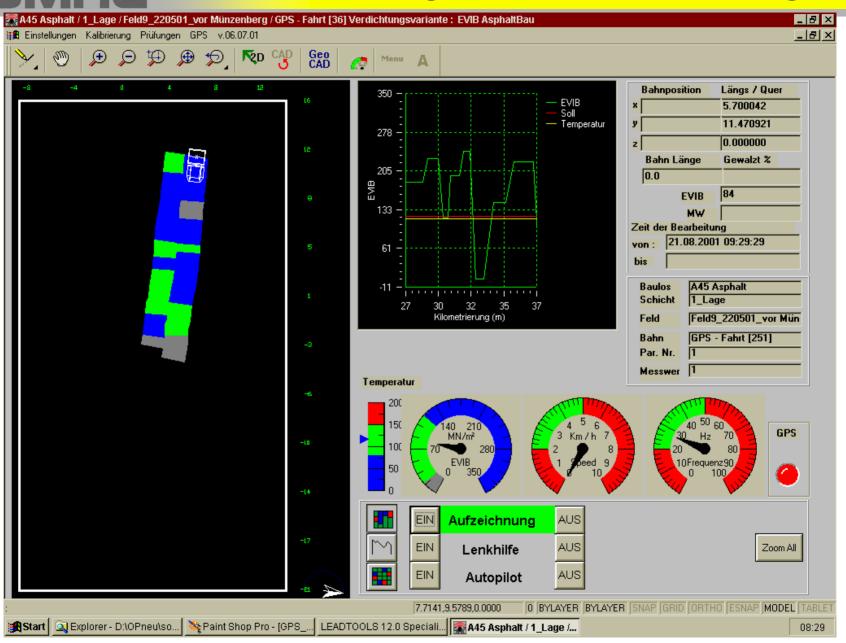


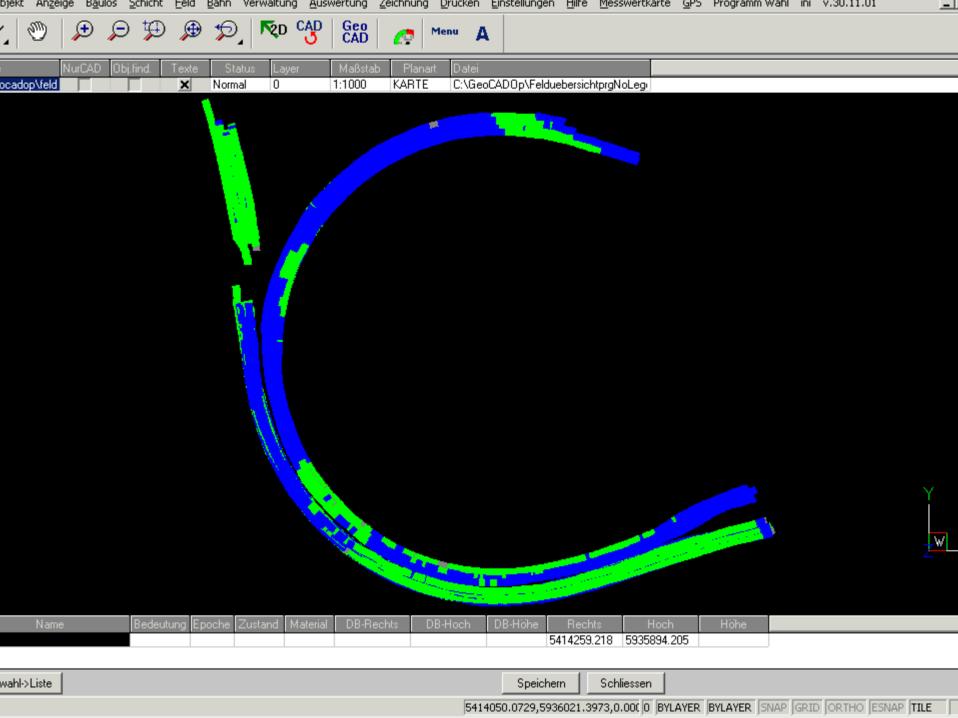
In case of an electronics failure the emergency switch enables the selection of two vibration directions: horizontal (left) or vertical (right)

Asphalt Manager + BOMAG GPS System

- Surface covering compaction control on asphalt layers
- GPS receiver
- GPS reference station
- Roller PC for data managing and graphical representation of roller position and stiffness values
- Position accuracy: better than 10 cm
- CAD based evaluation program

Roller positioning with total station (Geodimeter) for continuous compaction control on asphalt layers




Surface Covering Compaction Measurement

Maschine Baustelle Ort: Modell: BW 174 Variomatic2 BOMAG/TF/Testgelände Gewicht: 9000 kg Feld: Bandagenbreite: 1,68 m Grubenkies Bodenart: Linienlast: 27 kg/cm Einbauhöhe: 0,30 m Frequenz: 46 Hz Bearbeitungszeit: Einstellparameter 0-01.03.01 Datum: Amplitude: Automatik Bearbeiter: Wallrath Kraftstufe: 3 -2--10--12-MN/m² mm -14 -16-**Amplitude** Evib -18--20--22--24-5.0--26--28-Geschindigkeit Frequenz -14 -12 -10 fast ▶ slow Evib<60 y-Koord [m] -20,21 HUN 60<Evib<80 **PAUSI** 80<Evib<100 Clear Speichern v Koord [m] 6 07

BOMAG

Evib Messung mit GPS-Unterstützung

Determination of roller positions with GPS

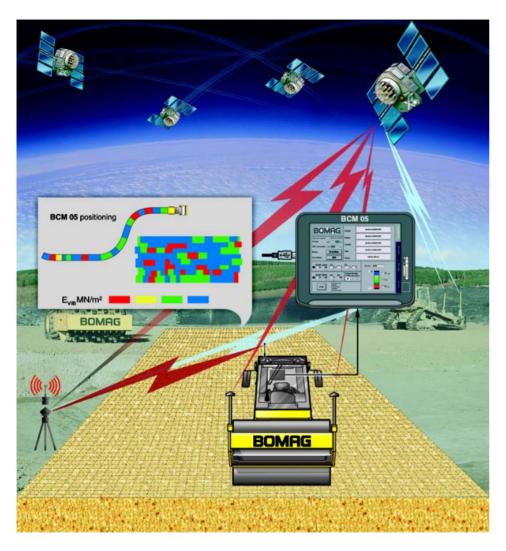
Reference station on the job site

High accuracy: up to 5 cm

GPS Reference service with reference satellite

Accuracy: up to 100 cm

- > OmniSTAR (world wide) ~ 1500,- Euro annual charge
- > EGNOS (Europe, not yet in operation) free of charge
- > WAAS (North America)


Local Reference network (reference service)

High accuracy: up to 5cm (depending on service)

> Ascos (since 2001, Ruhrgas / Germany, (only available in Rhine Area)

GPS / positioning with Reference Station

- Two GPS Antenna
- Reference station (Trimble)
- High accuracy (5cm)
- RTK (real time)
- BCM 05 positioning software